23º SINAPE - Simpósio Nacional de Probabilidade e Estatística

Dados do Trabalho


Título

MODELOS GAS COM DISTRIBUIÇOES ESTAVEIS PARA SERIES TEMPORAIS FINANCEIRAS

Data de titulação

06/12/2017

Instituição de titulação

Universidade de São Paulo (USP)

RESUMO (abstract)

Modelos GARCH tendo a normal e a t-Student como distribuições condicionais são amplamente utilizados para modelagem da volatilidade de dados financeiros. No entanto, tais distribuições podem não ser apropriadas para algumas séries com caudas pesadas e comportamento leptocúrtico. As chamadas distribuições estáveis podem ser mais adequadas para sua modelagem, como já explorado na literatura. Por outro lado, os modelos GAS (Generalized Autoregressive Score), com desenvolvimento recente, tratam-se de modelos dinâmicos que possuem em sua estrutura a função score (derivada do logaritmo da verossimilhança). Tal abordagem oferece uma direção natural para a evolução dos parâmetros da distribuição dos dados. Neste trabalho, é proposto um novo modelo GAS em conjunção com distribuições estáveis simétricas para a modelagem da volatilidade - de fato, é uma generalização do GARCH, pois, para uma particular escolha de distribuição estável e de estrutura do modelo, tem-se o clássico modelo GARCH gaussiano. Como em geral a função densidade das distribuições estáveis não possui forma analítica fechada, é apresentado seu procedimento de cálculo, bem como de suas derivadas, para o completo desenvolvimento do método de estimação dos parâmetros. Também são analisadas as condições de estacionariedade e a estrutura de dependência do modelo. Estudos de simulação são conduzidos, bem como uma aplicação a dados reais, para comparação entre modelos usuais, que utilizam distribuições normal e t-Student, e o modelo proposto, demonstrando a eficácia deste.

Área

Séries Temporais e Econometria

Autores

DANIEL TAKATA GOMES